Refine Your Search

Topic

Author

Search Results

Technical Paper

Cold Start Hydrocarbon Emissions Control

1995-02-01
950410
The revisions in the United States Clean Air Act of 1990 and recent regulatory actions taken by the California Air Resources Board and European Economic Community require the development of automobiles with much lower tailpipe emissions. A significant portion of the total pollutants emitted to the atmosphere by motor vehicles occurs immediately following the startup of the engine when the engine block and exhaust manifold are cold, and the catalytic converter has not yet reached high conversion efficiencies. An effective, energy efficient strategy for dealing with cold start hydrocarbon using carbon-free hydrocarbon traps and heat exchange related TWC catalyst beds has been successfully tested on a wide variety of current model vehicles. In each case U.S. FTP 75 total hydrocarbon emissions were reduced between 45 - 75% versus the vehicle's stock exhaust system.
Technical Paper

Abatement of NOx from Diesel Engines:Status and Technical Challenges

1995-02-01
950747
The technical issues related to NOx abatement for diesel applications are summarized. Data on improved catalysts and a novel approach which involves temporarily trapping of NOx before reduction are presented. New high temperature lean NOx materials have been identified which have better hydrothermal stability than the state of the art Cu/ZSM-5. One of these materials, Catalyst A, was shown to reduce the NOx emitted from a 2.5 L diesel engine at temperatures ≥ 350°C using injected diesel fuel as a reductant. Catalyst A also showed reasonably good durability after aging for 500 h at ca. 500°C on a 14 L diesel truck engine. Pt/Al2O3, a low temperature lean NOx reduction catalyst (200-300°C), demonstrated fairly good performance after 125 h of aging on a 4 L diesel truck engine, however sulfate make and N2O formation are high on this material. New low temperature NOx traps show promise for transient removal of NOx below 200-400°C.
Technical Paper

Evolution of Pd/Rh TWC Catalyst Technology

1993-03-01
930249
The challenge to substitute less expensive Pd for Pt in TWC catalysts is complicated by the fact that Pd is susceptible to fuel poisons. Laboratory studies indicate that while the precious metal support plays an important role in the CO-NOx reaction, sulfur poisoning dominates. In a reaction to probe selectively the Rh metal function within a washcoat, it was found that small levels of Pd can have a deleterious impact on the performance of the Rh metal. Engine aging studies corroborate the work of recent publications showing that conventional Pd/Rh TWC catalysts exhibit poorer performance than standard Pt/Rh catalysts. The more stringent TLEV and LEV emission standards require more robust catalysts than are currently available. To obtain faster light-off in close coupled positions, the catalyst will experience higher exhaust temperatures. A Pd/Rh catalyst, with an engineered washcoat to minimize alloying, can exceed the performance of a current Pt/Rh commercial catalyst.
Technical Paper

Hydrocarbon Traps for Controlling Cold Start Emissions

1993-03-01
930739
The Federal Test Procedure (FTP) test contains an initial period, prior to the catalyst becoming fully activated, during which hydrocarbons escape the vehicle. These hydrocarbons constitute 60-80% of the total emitted over the entire FTP test. To meet future emission levels mandated by the California Air Resources Board, alternate technologies must be created that deal effectively with these cold start hydrocarbons. This paper describes an adsorbent bed/catalyst system that can trap approximately 70% of the available nonmethane hydrocarbons over the first two minutes of the FTP test. Importantly, the trap does not require bypass valves because of a unique heat exchange approach to catalytically consuming the trapped hydrocarbons, and because the trapping materials are unaffected by engine exhaust temperatures below 800°C. Experiments with a prototype system demonstrate that LEV emissions are possible.
Technical Paper

A Non-Rhodium Three-Way Catalyst for Automotive Applications

1992-02-01
920094
Three-way catalysts (TWC) to remove the HC, CO, and NOx pollutants from the exhaust of gasoline powered vehicles employ rhodium in combination with platinum and palladium. Of these precious metals, rhodium is by far the most expensive. Since it is so heavily used for its NOx reduction capabilities, the amount per vehicle approaches and sometimes exceeds the naturally occurring mine ratio. A program was conducted to determine the feasibility of a non-rhodium TWC catalyst. It showed that Pt and Pd in conjunction with other washcoat support materials exhibited relatively good TWC characteristics compared to a Pt/Rh catalyst after engine dynamometer aging. In FTP evaluations this new REDOX type catalyst gave comparable HC and CO efficiency and 85% of the NOx efficiency of a Pt/Rh-containing catalyst. Presently the operating window is being defined but comparisons to conventional Pt/Pd and Pt/Rh catalysts have been made under a number of conditions.
Technical Paper

Effect of Oxygen Concentration on Aging of TWC Catalysts

1992-02-01
920098
A common practice to improve vehicle fuel economy is to employ a fuel cut-off strategy on deceleration. This practice exposes the TWC exhaust catalyst to varying concentrations of oxygen depending on the vehicle control strategy. Since it is well known that exposure to oxygen at high temperature is deleterious to long term catalyst durability, it is important to understand the impact of oxygen concentration and temperature on catalyst performance. Simulated fuel cut agings at about 1%, 3%, and 9% oxygen concentration were compared to a full fuel cut aging (21% oxygen concentration). It was found that even small concentrations of oxygen at high temperature damaged catalyst performance. Deactivation increased with increasing oxygen concentration and increasing temperature.
X